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Abstract

In this paper we compute explicit formulas for the holonomy map for a gerbe with connection over an
orbifold. We show that the holonomy descends to a transgression map in Deligne cohomology. We prove that
this recovers both the inner local systems in Ruan’s theory of twisted orbifold cohomology [1] and the local
system of Freed–Hopkins–Teleman in their work in twisted K-theory [2]. In the case in which the orbifold
is simply a manifold we recover previous results of Gawȩdzki [3] and Brylinski[4].
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

A gerbe L over a manifold M (or a scheme, if you prefer) has much in common with a complex
line bundle L.

A complex line bundle L is classified up to isomorphism class by a cohomology class c1(L) ∈
H2(M;Z), its Chern class. By using the exponential sequence of sheaves

0 → Z→ C
exp→C× → 1

we can immediately interpret the Chern class of L as an element [g] of the cohomology group
H1(M;C×). In fact a Čech cocycle for this class is given by the gluing mapsgij : Uij = Ui ∩ Uj →
C

× of the line bundle for a Leray atlas (Ui)i∈I of the manifold M, namely one in which all open
sets and their finite intersections are empty or contractible.
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Moreover, if we put a connection ∇ on the line bundle given locally by 1-formAi ∈ Ω1(Ui) ⊗ C
then the curvature F (L,∇) = dA ∈ Ω2(M) ⊗ C satisfies the Bianchi identity

dF = 0

and therefore it defines a cohomology class [F ] ∈ H2(M;C). Weil [5] showed that
[
F

2πi

]
is the

image of −c1(L) under the map H2(M;Z) → H2(M;C).
In any case c1(L) completely determines the isomorphism class [L] of L—we say thatH2(M;Z)

is isomorphic to the group of isomorphism classes of line bundles over M. Later in this paper we
will define a cohomology group H2(M;Z(2)∞D ) due to Deligne and Brylinski (and also Cheeger-
Simons) that has the following properties:

• There is a surjective homomorphism H2(M;Z(2)∞D ) → H2(M;Z)
• H2(M;Z(2)∞D ) classifies isomorphism classes [L,∇] of line bundles with connection and the

map above is realized by [L,∇] �→ [L]

Let us denote by LM the space of smooth maps from the circle S1 to M (with no base point
condition—LM is known as the free loop space of M). There is a tautological map

S1 × LM −→ M

called the evaluation map sending (z, γ) �→ γ(z). We can use this map together with the Künneth
theorem and the fact that H1(S1;Z) = Z to get

H2(M;Z) → H2(S1 × LM;Z) ∼= H2(LM;Z) ⊕ (H1(LM;Z) ⊗H1(S1;Z))
∼=→H2(LM;Z) ⊕H1(LM;Z) → H1(LM;Z) ∼= H0(LM;C×)

(where the next to last map is projection into the second component, and the last is induced by
the exponential sequence). We call the resulting mapH2(M;Z) → H1(LM;Z) the transgression
map.

The previous discussion can be refined to get a map

H
2(M;Z(2)∞D ) → H0(LM;C×)

that has a classical interpretation in terms of the holonomy of (L,∇) along a closed path γ ∈ LM.
To wit, a connection ∇ on L produces a parallel transport, that is a linear map P(L,∇)(γ) for every
path γ : [a, b] → M of the form

P(L,∇)(γ) : Lγ(a) → Lγ(b)

from the initial fiber to the final fiber.
Let us define the category S0(M) that we call the 0-th Segal category of M. Its objects are the

points of M and its morphisms are paths γ : [0, 2π] → M. We think of γ as an arrow from γ(0) to
γ(2π). Then given a line bundle with connection (L,∇) the parallel transport gives us a functor

P(L,∇) : S0(M) −→ Vector Spaces

that assigns to the object x ∈ M the one-dimensional vector spaceLx and to the arrow γ the linear
map P(L,∇)(γ).

In particular, should γ be a closed path γ : S1 → M then the linear isomorphism P(L,∇)(γ)
can be canonically identified with an element of C×, producing then a map

LM −→ C
×

and hence and element in H0(LM;C×).
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Let us consider now a gerbe L over M. We will define gerbes later in the paper, but for now
we list some of their properties.

• The group of isomorphism classes of gerbes Gb(M) on M is isomorphic to H3(M;Z).
• The isomorphism Gb(M) → H3(M;Z) is realized by the Dixmier–Douady characteristic class
dd(L) ∈ H3(M;Z) of the gerbe L.

• We can place connections � (also known as connective structures) on gerbes.
• The curvature of a connection over a gerbe L on M is a closed 3-form G ∈ Ω3(M) ⊗ C.
• The de Rham cohomology class

[
G

2πi

] ∈ H3(M;R) is the real image of dd(L).
• The group of isomorphism classes of gerbes with connections over M is isomorphic to a Deligne

cohomology group H3(M;Z(3)∞D ).
• The holonomy of a gerbe L with connection � is a complex line bundle L with connection ∇

on the free loop space LM.
• The holonomy (L, �) �→ (L,∇) realizes a transgression map

H
3(M;Z(3)∞D ) → H

2(LM;Z(2)∞D )

• A pair (L, �) induces a parallel transport functor

P(L,�) : S1(M) −→ Vector Spaces

from the first Segal category of M whose objects are maps from compact closed one-dimensional
oriented manifolds to M, and whose morphisms are maps from compact two-dimensional man-
ifolds to M forming cobordisms between two objects [6–8]. For instance, in the picture below
we have two maps γi : S1 → M (i = 1, 2) and a map Σ : F → M from a two-dimensional
manifold F into M. Such a configuration would produce a linear isomorphism

Such a functor is closely related to a String Connection in the terminology of Segal [8],
Stolz, and Teichner [9]. More specifically if γ : S1 → M is an object of S1(M), then we have
P(L,�)(γ) = Lγ , where L is the line bundle over LM mentioned in the last paragraph.

The purpose of this paper is to generalize the previous picture to the case in which instead
of considering a manifold M we consider a smooth orbifold or Deligne–Mumford stack X. This
new case involves many new features and links together several interesting structures that have
appeared in geometry and topology recently. We will briefly describe now the contents of this
paper.

In Section 2 we set our notations and terminology for the theory of groupoids. We will use
groupoids as models for our orbifolds —they will be our basic tool. We recall that a groupoid G is
a category in which all morphisms have inverses and by an orbifold groupoid we mean a proper,
smooth, étale groupoid. In this paper whenever we write groupoid a smooth, étale groupoid is to
be understood.
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In Section 2.1 we deal with the issue of defining the “free loop space" of an orbifold. Since
an orbifold is already more than a space, the answer is itself an infinite dimensional orbifold that
we call the loop orbifold. Our model for the loop orbifold will be a groupoid—the loop groupoid
LG. In particular when the orbifold happens to be a manifold then the loop orbifold is simply the
free loop space of the manifold.

In Section 2.2 we explain sheaf cohomology theory for groupoids. Then in Section 2.3 we use
this theory to define Deligne cohomology for groupoids and explain its relation to the theory of
n-gerbes with connective structure.

In Section 3 we prove the following theorem.

Theorem 1.1. There is a natural transgression map (holonomy)

τ1 : C̆1(G,C×(2)G) → C̆0(LG,C×
LG

)

that associates to every line bundle with connection over G its holonomy. Here C×
LG

is the sheaf

of C× valued functions on the loop groupoid. This map descends to cohomology

H
1(G;Z(1)∞D ) → H0

(
LG,C×

LG

)
.

In Section 4 we go ahead and define the Deligne cohomology for the loop groupoid to then
prove the following theorem.

Theorem 1.2. There is a natural holonomy homomorphism

τ2 : C̆2(G,C×(3)G) → C̆1(LG,C×(2)LG)

from the group of gerbes with connection over G to the group of line bundles with connection
over the loop groupoid. Moreover this holonomy map commutes with the coboundary operator
and therefore induces a map in orbifold Deligne cohomology

H
2(G;Z(2)∞D ) → H

1(G;Z(1)∞D ).

We prove in fact a little bit more. For what we really construct is a functor

LG → Vector Spaces

given by parallel transport along arrows of the loop groupoid for the gerbe connection. While
in the case of a manifold M this is only the portion of the string connection that associates the
vector space to the objects of S1(M), in the case of an orbifold groupoid G we already have arrow
assignments. Since LG ↪→ S1(G) is an inclusion of categories, we think of the functor constructed
here as a genus-zero-one-input-one-output-ghost-part of the string connection. Indeed, the arrows
of LG can be thought of as infinitely thin cylinders in the orbifold. This is an interesting issue. In
fact, in the case in which one works with a global quotient orbifold (namely an orbifold that can be
written with only one orbifold chart in the form G = [M/G] where M is a smooth manifold and
G a finite group) and simultaneously with a global gerbe (namely a gerbe over [M/G] whose data
is given by global forms) we have worked out the explicit formulas for the full string connection,
and not only the ghost part. The interested reader can find this computation in [10]. The general
construction of the full string connection for S1(G) would take us too far a field, we will return
to this issue in a future paper.

Then in Section 4.1 we show that when the orbifold in question is simply a manifold we recover
the results of Gawȩdzki [3] and Brylinski [4].
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In Section 4.2 we study the particular case in which the orbifold X is actually a global quotient
[M/G], and the gerbe in question is globally defined.

Then in Section 4.3 we compute explicitly the case when the gerbe in question comes from
discrete torsion in a global quotient orbifold [M/G].

In Section 5 we pursue the subject of localization. One of the main results of [11] is the
following theorem.

Theorem 1.3. The fixed suborbifold of LG under the natural S1-action (rotating the loops) is

∧G = (LG)S
1

Here ∧G is the so-called twisted sector orbifold or inertia groupoid of G. In the case of a
manifold ∧M = M.

We prove then the following theorem for G an orbifold groupoid

Theorem 1.4. The restriction of the holonomy of a gerbe with connection over G (that is a line
bundle with connection over LG) is an inner local system on ∧G.

Inner local systems were discovered by Ruan [1] for completely different reasons. As it happens
this is too the local system used by Freed, Hopkins and Teleman [2] in their work on twisted
K-theory whenever the action of the Lie group is almost free, namely that it has only finite
stabilizers.

Finally in Section 6 we discuss how to generalize the previous theory to n-gerbes with con-
nection. The corresponding holonomy formula send (n+ 1)-gerbes to n-gerbes.

What we prove in this paper is actually a bit stronger than the statements of the previous
theorems. We give explicit formulas for the holonomy maps, and then show that it descends to
Deligne cohomology. Our motivation to do this is that in physics all the objects we have discussed
have interesting interpretations and explicit formulas are necessary for computations [12]. For
example we have explained elsewhere that in orbifold string theory (and conformal field theory)
both the B-field and discrete torsion can be suitably interpreted in terms of gerbes and Deligne
cohomology over orbifolds [13]. For related statements and work in the physics literature we refer
the reader to [14] and the references therein.

2. Deligne cohomology for groupoids

When we say a groupoid we mean a (small) category G so that the set of its objects G0 and
the set of its arrows G1 are both manifolds, and every arrow has an inverse.

We will represent orbifolds by groupoids. It is useful to consider the following two examples
as motivation.

Example 2.1. Let G be a finite group. Consider the orbifold [M/G] obtained from a G-manifold M
(we use the brackets to differentiate the orbifold [M/G] from the quotient space – or coarse moduli
of orbits –M/G ). Then we will associate to it the groupoid X with morphisms X1 = M ×G and
objects X0 = M. The arrow (m, g) takes the object m to the object mg. We will often write the
groupoid X by the symbol M ×G⇒ M.

Example 2.2. Consider a manifold M with an atlas U = (Ui)i. We will associate to (M,U) the
groupoid MU whose objects M0 = {(x, i) : x ∈ Ui} = ∐

i Ui and whose arrows M1 = {(x, i, j) :
x ∈ Uij = Ui ∩ Uj} = ∐

(i,j) Uij . The arrow (x, i, j) takes the object (x, i) to the object (x, j).
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In the case of a general orbifold there is a groupoid that represents it that is a sort of hybrid of
the previous two examples.

The groupoids G we will be concerned with will be étale and smooth, this means that all
the structure maps (m = composition, i = inverse,e = identity, s = source, t = target) are local

diffeomorphisms, and the sets Gi = G1 t×s G1 t×s · · · t×s G1 (I-times) are all manifolds. When
the anchor map (s, t) : G1 → G0 × G0 is proper the groupoid will represent an orbifold groupoid.

Definition 2.3. By an orbifold groupoid we mean smooth, étale, proper groupoid.

In this paper we are only concerned with smooth étale groupoids. When we think of a groupoid,
implicitly what we are considering, is the Morita equivalence class where the groupoid belongs
(see [15] for the definition of Morita equivalence). But in order to make calculations explicit, or
to use Čech cohomology, we will make use of a special representative of the Morita class. We
require this groupoid to be built out of a disjoint union of contractible sets as follows.

Definition 2.4. A groupoid G is called Leray if Gi = G1 t×s G1 t×s · · · t×s G1 (i-times) is
diffeomorphic to a disjoint union of contractible open sets for all i ∈ N.

The existence of such Leray groupoid representative for every orbifold is proven by Moerdijk
and Pronk [16, Cor. 1.2.5].

Here we are concerned with the geometry of the groupoid and we will give very explicit
geometric descriptions of the objects in study. The algebraic topology of groupoids has been
studied by several authors [17–19,15,16] and having both the geometric and the topological
approaches is very useful.

Here we should introduce another very important structure associated to a groupoid called the
inertia groupoid.

Definition 2.5. The inertia groupoid ∧G is defined by:

• Objects (∧G)0: Elements v ∈ G1 such that s(v) = t(v).
• Morphisms (∧G)1: For v,w ∈ (∧G)0 an arrow v →α w is an element α ∈ G1 such that v · α =
α · w

It is known that the inertia groupoid in the case of an orbifold matches with what is commonly
known in the literature by twisted sectors (see [1,11]), thus this is a natural way to define them.
And we will see in the next section that the inertia groupoid arises naturally as the constant loops
of the loop groupoid.

2.1. Loop groupoid

In the last years it has become increasingly evident that the free loop space of a manifold
LM = Map(S1,M) is a very important concept, providing a sort of natural thickening of M, it
is at first not clear how one must define the free loop space of an orbifold. It is apparent that
simply considering free loops in the quotient space G/∼ forgets all the orbifold structure. In fact
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the correct notion that we call the loop orbifold or loop groupoid is itself an orbifold, albeit an
infinite dimensional one.

We have defined in [11] the loop groupoid to be a category whose objects are Hom(S1,G) in
the category of groupoids (its objects were known to Mrčun [20] and to Bridson-Haefliger [21]).

Example 2.6. Consider again the orbifoldX = [M/G] represented by the groupoidM ×G⇒ M

that we denote by X, as at the beginning of the last section. Consider the groupoid LX whose objects
are all pairs (φ, g), φ : [0, 1] → M, g ∈ Gwhere we have φ(0)g = φ(1). Let G act on the paths in
the natural way, i.e. {φ · k}(t) = φ(t)k with {φ · k}(0)k−1gk = {φ · k}(1). We declare the arrows
of LX to be the triples (φ, g, k) so that φ : [0, 1] → M, φ(0)g = φ(1) and k ∈ G. The arrow
Λ = (φ, g, k) in LX sends the path (φ, g) to (φ · k, k−1gk). We call LX the loop groupoid.

To do this in full generality we must face the following difficulty. Suppose that we first assign
a groupoid to S1 and consider the groupoid morphisms to G. They will certainly be a portion
of the desired loop groupoid, but unfortunately we may be missing elements on it that will only
become apparent by choosing a finer groupoid representation of the circle. Therefore we need to
consider all the Morita equivalent groupoids representing the circle (this amounts to take finer
and finer covers of the circle). This is explained in detail in [11]. The following formalism (that
is unfortunately a bit technical) solves this difficulty.

For a finite set {q1, . . . , qn, q0} ⊂ (0, 1] with q1 < · · · < qn < q0 and ε > 0 sufficiently small
we associate a unique cover of the circle given by the sets V 0

i := (qi − ε, qi+1 + ε) and the
exponential map e2πit . This cover induces an admissible cover W on the real numbers R that
consist of the sets Vki := (qi + k − ε, qi+1 + k + ε) and Vk0 := (q0 + k − 1 − ε, q1 + k + ε) for
k ∈ Z and 1 ≤ i ≤ n. We call RW the groupoid associated to this cover, i.e.

R
W
1 :=

⊔
i,j,k,l

V
k,l
i,j , R

W
0 :=

⊔
i,k

V ki

where Vk,li,j := Vki ∩ V lj; and the ε is small enough so that all the double intersections are of the

form (qi + k − ε, qi + k + ε) or empty. We can now define the natural action of Z in RW1

R
W
1 × Z→ R

W
1 , ((x, V k,li,j ),m) → (x+m,V

k+m,l+m
i,j )

with x ∈ Vk,li,j and x+m ∈ Vk+m,l+mi,j .

Definition 2.7. Let S
1
W be the groupoid

R
W
1 × Z
�
R
W
0

with maps

s((x, V k,li,j ),m) = (x, V ki ), t((x, V k,li,j ),m) = (x+m,V l+mj ),

e(x, V ki ) = ((x, V k,ki,i ), 0), i((x, V k,li,j ),m) = ((x+m,V
l+m,k+m
j,i ),−m)

m[((x, V k,li,j , m), ((x+m,V
k+m,l+m
i,j ), n)] = ((x, V k,li,j ),m+ n).
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The groupoid S
1
W is Morita equivalent to the unit groupoid S1 ⇒ S1 (all arrows are identities). If

W ′ is a refinement of W, then there is a unique Morita morphism ρW
′

W : S
1
W ′ → S

1
W .

Definition 2.8. For G a topological groupoid and an open cover W of the circle, the loop groupoid
LG(W) associated to G and the open cover W will be defined by the following data:

• LG(W)0 the objects: morphisms of groupoids S
1
W → G

• LG(W)1 the morphisms: for two elements in LG(W)0, say Ψ,Φ : S
1
W → G , a morphism

(arrow) from Ψ toΦ is a mapΛ : RW1 × Z→ G1 that makes the following diagram commute
and such that for r ∈ RW1 × Z

Λ(r) = Ψ1(r) ·Λ(et(r)) = Λ(es(r)) ·Φ1(r). (1)

The composition of morphisms is defined pointwise, in other words, for Λ and Ω with we set

Ω ◦Λ(es(r)) := Λ(es(r)) ·Ω(es(r))

and

Ω ◦Λ(r) := Ω ◦Λ(es(r)) · Γ (r) = Ψ (r) ·Ω ◦Λ(et(r))

The previous properties imply that an arrow Λ determines its source Ψ and its target Φ. We
consider LG(W)1 as a subspace of the space of smooth maps Map(RW1 ,G1) × Map(RW0 ,G1); in
this way LG(W)1 and LG(W)0 inherit the compact-open topology, making the groupoid LG(W)
into a topological one. For two admissible covers W1,W2 associated to {q1, . . . , qn, q0} and
{q′

1, . . . , q
′
n′ , q′

0} respectively, there is always a common refinement. We could take W associated

to {q1, . . . , qn, q0} ∪ {q′
1, . . . , q

′
n′ , q′

0} and the natural morphisms ρWWi : S
1
W → S

1
Wi

. These induce

natural monomorphisms of topological groupoids LG(Wi) ↪→ LG(W). We want that two objects

Ψi : S
1
Wi

→ G1 (i = 1, 2) to be equivalent if the following square is commutative so we define

Definition 2.9. The loop groupoid LG of the groupoid G is defined as the monotone union
(colimit) of the groupoids LG(W) where W runs over the set W of admissible covers

LG := lim−−−−→
W ∈ W

LG(W).
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In this way the loop groupoid is naturally endowed with a topology, becoming a topo-
logical groupoid. Now we list some facts about the loop groupoid that can be found in
[11].

• For G étale and proper, then LG is also étale and has finite isotropy.
• A morphism of groupoids F → G induces naturally another one at the level of loops LF → LG.
• If the morphism F → G is Morita, then LF → LG is also Morita.
• The loop groupoid LG can be endowed with an action of R in a natural way, i.e. shifting the

morphisms by t ∈ R. The fixed point set groupoid LG
R

under this action is Morita equivalent
to the inertia groupoid ∧G (Definition 2.5).

2.1.1. The tangent loop groupoid
The loop groupoid is endowed with a natural tangent groupoid in the same way the groupoid

G is endowed with its tangent groupoid TG defined as TG1 ⇒ TG0 with the induced structure
maps (clearly TG is also smooth and étale).

Definition 2.10. For Ψ an object of LG(W), the tangent space TΨLG(W) will consist of all

morphisms ξ : S
1
W → TG such that p ◦ ξ = Ψ where p : TG → G is the natural projection

morphism; these will be the objects of TLG(W). The morphisms of TLG(W) are the natural ones,
namely for an arrow Λ : Ψ → Φ with ξ ∈ TΨLG(W) and ζ ∈ TΦLG(W), a tangent morphism
in TΛLG(W) between ξ and ζ is a map ν : R1

W × Z→ TG1 that makes the following diagram
commute

Taking the inverse limit over the admissible covers W of TLG(W) we obtain TLG.

2.2. Sheaves and cohomology

All the properties of sheaves and cohomologies of topological spaces can be extended for the
case of smooth étale groupoids. This is done in [22,17]. Let us briefly summarize the theory. A
G-sheaf F is a sheaf over G0, namely a topological space with a projection p : F → G0 which
is a local homeomorphism on which G1 acts continuously. This means that for a ∈ Fx = p−1(x)
and g ∈ G1 with s(g) = x, there is an element ag in Ft(g) depending continuously on g and a.
The action is a map Fp×sG1 → F. For F a G-sheaf, a section σ : G0 → F is called invariant if
σ(x)g = σ(y) for any arrow x→g y. Γinv(G,F) is the set of invariant sections and it will be an
abelian group ifF is an abelian sheaf. For an abelian G sheafF, the cohomology groupsHn(G,F)
are defined as the cohomology groups of the complex:

Γinv(G, T0) → Γinv(G, T1) → · · ·
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where F → T0 → T1 → · · · is a resolution of F by injective G-sheaves. When the abelian sheaf
F is locally constant (for example F = Z) it is a result of Moerdijk [23] that

H∗(G,F) ∼= H∗(BG,F)

where the left hand side is sheaf cohomology and the right hand side is simplicial cohomology.
There is a basic spectral sequence associated to this cohomology. Pulling back F along

εn : Gn → G0 (2)

εn(g1, . . . , gn) = t(gn)

it induces a sheaf ε∗nF on Gn (where the G action on Gn is the natural one, i.e. (g1, . . . , gn)h =
(g1, . . . , gnh); Gn becomes in this way a G-sheaf) such that for fixed q the groups Hq(Gp, ε

∗
pF)

form a cosimplicial abelian group, inducing a spectral sequence:

HpHq(G•,F) ⇒ Hp+q(G,F)

So if 0 → F → F 0 → F 1 → · · · is a resolution of G-sheaves with the property that ε∗pFq is an

acyclic sheaf on Gp, thenH∗(G,F) can be computed from the double complex Γ (Gp, ε
∗
pFq). We

conclude by introducing the algebraic gadget that will allow us to define Deligne cohomology.
Let F • be a cochain complex of abelian sheaves, then the hypercohomology groups Hn(G,F)
are defined as the cohomology groups of the double complex Γinv(G, T •) where F • → Tt• is a
quasi-isomorphism into a cochain complex of injectives.

2.3. Deligne cohomology

In what follows we will define the smooth Deligne cohomology of a smooth étale groupoid;
we will extend the results of Brylinski[4] to groupoids and will follow very closely the de-
scription given in there. We will assume that G is Leray (Definition 2.4) and that the set of
objects G0 is of bounded cohomological dimension. Deligne cohomology is related to the De
Rham cohomology. We will consider the De Rham complex of sheaves and we will truncate
it at level p; what interests us is the degree p hypercohomology classes of this complex. To be
more specific, let Z(p) := (2π

√−1)p · Z be the cyclic subgroup of C and Ap

G,C
the G-sheaf of

complex-valued differential p-forms; as G is a smooth étale groupoid the maps s and t are local
diffeomorphisms, then the action of G into the sheaf over G0 of complex-valued differential p-
forms is the natural one given by the pull back of the corresponding diffeomorphism. LetZ(p)G be

the constant Z(p)-valued G-sheaf, and i : Z(p)G → A0
G,C

the inclusion of constant into smooth

functions.

Definition 2.11. Let G be a smooth étale groupoid. The smooth Deligne complex Z(p)∞D is the
complex of G-sheaves:

Z(p)G
i→A0

G,C
d→A1

G,C
d→ · · · d→Ap−1

G,C

The hypercohomology groups Hq(G,Z(p)∞D ) are called the smooth Deligne cohomology of G.

In order to make the explanations clearer, where are going to work with a quasi-isomorphic
complex of sheaves to the Deligne one, which is a bit simpler.
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Definition 2.12. Let C×(p)G be the following complex of sheaves:

C
×
G

d log→ A1
G,C

d→ · · · d→Ap−1
G,C

There is a quasi-isomorphism between the complexes (2π
√−1)−p+1 · Z(p)∞D and C×(p)G[−1]

(this fact is explained in Brylinski [4] p. 216)

hence there is an isomorphism of hypercohomologies:

H
q−1(G,C×(p)G) ∼= (2π

√−1)−p+1 ·Hq(G,Z(p)∞D ) (3)

Now let G be a Leray groupoid. We are going to define the Čech double complex associated
to the G-sheaf complex C×(p)G. Consider the space

Ck,l = C̆(Gk,Al

G,C
) := Γ (Gk, ε

∗
kAl

G,C
)

of global sections of the sheaf ε∗kAl

G,C
over Gk as in (2). The vertical differential Ck,l → Ck,l+1

is given by the maps of the complex C×(p)G and the horizontal differential Ck,l → Ck+1,l is

obtained by δ = ∑
(−1)iδi where for σ ∈ Γ (Gk, ε

∗
kAl

G,C
)

(δiσ)(g1, . . . , gk+1) =

⎧⎪⎨⎪⎩
σ(g1, . . . , gk) · gk+1 for i = k + 1

σ(g1, . . . , gigi+1, . . . , gk+1) for 0 < i < k + 1

σ(g2, . . . , gk+1) for i = 0

Definition 2.13. For G a smooth étale Leray groupoid, let us denote by C̆∗(G,C×(p)G) the total
complex

C̆0(G,C×(p)G)
δ−d→ C̆1(G,C×(p)G)

δ+d→ C̆2(G,C×(p)G)
δ−d→ · · ·

induced by the double complex with (δ+ (−1)id) as coboundary operator. The Čech hypercoho-

mology of the complex of sheaves C×(p)G is defined as the cohomology of the Čech complex

C̆(G,C×(p)G):

H̆∗(G,C×(p)G) := H∗C̆(G,C×(p)G).
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As the Gi’s are diffeomorphic to a disjoint union of contractible sets – Leray – then the previous
cohomology actually matches the hypercohomology of the complex C×(p)G, so we get

Lemma 2.14. The cohomology of the C̆ech complex C̆∗(G,C×(p)G) is isomorphic to the hyper-

cohomology of C×(p)G

H̆∗(G,C×(p)G)
∼=→ H

∗(G,C×(p)G).

The Deligne cohomology groups classify the isomorphism classes of what is known as n-gerbes
with connective structure.

Definition 2.15. An n-gerbe with connective structure over G is an (n+ 1)-cocycle of
C̆n+1(G,C×(n+ 2)G). Their isomorphism classes are classified by Hn+1(G,C×(n+ 2)G) =
H
n+2(G,Z(n+ 2)∞D ).

The following fact is more or less obvious, and relates this definition with the one given by the
authors in [18]:

Proposition 2.16. To have a 1-gerbe over G is the same thing as to have a line bundle L over
G1 together with maps θ, h satisfying the following properties:

• i
∗L∼=θ L−1

• π∗
1L ⊗ π∗

2L ⊗ m
∗
i
∗L∼=h 1

• h : G1 t×s G1 → C
× is a 2-cocycle.

When the groupoid G is Leray, then the line bundle L is trivial and all the information is encoded
in the 2-cocycle h. In this case a gerbe with connection will consist also of a 1-formA ∈ Ω1(G1),
a 2-form B ∈ Ω2(G0) and a 3-form K ∈ Ω3(G0) satisfying:

• K = dB
• t

∗
B − s

∗
B = dA and

• π∗
1A+ π∗

2A− m
∗
A = −√−1h−1dh

As we will see via the holonomy map:

• A 0-gerbe with connective structure induces a line bundle with connection over the groupoid
G and a global 2-form on G/∼

• A 1-gerbe with connective structure induces what is known in the literature as a gerbe with
connection over G and a global 3-form on G/∼.

Before finishing this section let us point out that the group Hn−1(G,C×(n)G) is the only one
that encodes really new information as the following proposition clarifies.

Proposition 2.17.

H
p(G,Z(n)∞D ) ∼= Hp−1(G,C×(n)G) =

{
Hp−1(G,C×) = Hp(G,Z) forp > n

Hp−1(G,C×) for p < n

where C× stands for the sheaf of C× valued functions.
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Proof. Let us have a look at the double complex of Definition 2.13. When p > n the p-cocycles
are over the diagonal, so the information of all the columns of the double complex besides the first is
irrelevant. This is because the sheavesAi

G,C
are acyclic. Now, when p < n and (h, ω1, . . . , ωp−1)

is a (p− 1)-cocycle, by a successive application of Poincaré lemma it is possible to find an element
(f, θ1, . . . , θp−2) in C̆p−2(G,C×(n)G) such that

(h, ω1, . . . , ωp−1) − (δ+ (−1)p−2d)(f, θ1, . . . , θp−2) = (h− δf, 0, . . . , 0)

with d(h− δf ) = 0, a locally constant C× function. This implies the second isomorphism. �

After this brief summary of definitions we are ready to define the holonomy map for smooth
étale groupoids.

3. Holonomy

In the same way that a line bundle with connection over a manifold M induces a C× valued
function on the free loop space of M, given by the holonomy around a loop, we can define its
analogous to smooth étale groupoids. Let us recall that the groupoid in mind is Leray, so we can
make use of the Čech description of the hypercohomology.

Let W be an admissible cover of the circle associated to the set {α0, α1, . . . , αn} with 0 = α0 <

α1 < · · · < αn = 1 as in Section 2.1.

Theorem 3.1. There is a natural transgression map (holonomy)

τ1 : C̆1(G,C×(2)G) → C̆0(LG(W),C×
LG(W)

)

that sends cocycles to cocycles and that descends to cohomology

H
1
(

G,C×
G

d log→ A1
G,C

)
→ H0

(
LG(W),C×

LG(W)

)
.

Proof. First we will set up the notation. The pair (h,A) will be an element in C̆1(G,C×(2)G)

with h : G1 → C
× andA ∈ Γ (G0,A1

G,C
). The objectψ : S

1
W → G of the loop groupoid LG(W)

will consist of maps ψi : Ii = [αi−1, αi] → G0 and arrows ψ : {α1, . . . , αn} → G1 such that

s(ψ(αi)) = ψi(αi) and t(ψ(αi)) = ψi+1(αi)

and when i = ntψ(αn) = ψ1(α0).
So τ1(h,A) defines a function H : LG(W)0 → C

× as follows:

H(ψ) := exp

(
n∑
i=1

∫
Ii

ψ∗
i A

)
n∏
i=1

h(ψ(αi))
−1. (4)

It is clearly an homomorphism. We show now that H descends to cohomology. Suppose that
(h,A) is a 1-cocycle, its coboundary (d + δ)(h,A) is zero, i.e.

t
∗
A− s

∗
A = −d log h, in G1 (5)

h(g2)h(g1g2)−1h(g1) = 1 for (g1, g2) ∈ G2, (6)

We want to see that the coboundary δ of τ1(h,A) = H is also zero. The cycle δH is a function
LG(W)1 → C

× that for the arrow Λ between ψ and φ takes the value δH(Λ) = H(φ)H(ψ)−1.
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The arrow Λ will consist of maps Λi : Ii → G1 such that

Λi(αi) · φ(αi) = ψ(αi) ·Λi+1(αi)

whereΛn+1(αn) := Λ0(α0). In the following diagram the dark lines are the images of the intervals
in G0 and the arrows are elements in G1.

(7)

Making use of the property (5) of the 1-cocycle (h,A) we get the following set of equalities:

exp
(∫
Ii
φ∗
i A

)
exp

(∫
Ii
ψ∗
i A

) = exp

(∫
Ii

Λ∗
i (t

∗
A−s

∗
A)

)
= exp

(∫
Ii

Λ∗
i (−d logh)

)
= h(Λi(αi−1))

h(Λi(αi))
,

and using property (6) we have

δH(Λ) = H(φ)

H(ψ)
=

n∏
i=1

h(Λi(αi−1))

h(Λi(αi))

h(ψ(αi))

h(φ(αi))
=

n∏
i=1

h(ψ(αi))h(Λi+1(αi))

h(Λi(αi))h(φ(αi))

=
n∏
i=1

h(Λi(αi) · φ(αi))

h(ψ(αi) ·Λi+1(αi))
= 1

This means that H is invariant under the action of LG(W)1 therefore it defines a map

H : LG(W)/ ∼→ C
×

Now if (h,A) is a coboundary, i.e. (h,A) = (δf,−d log f ) for some f : G0 → C
× then H =

τ1(δf,−d log f ) will become

H(ψ) = exp

(
n∑
i=1

∫
Ii

ψ∗
i (−d log f )

)
n∏
i=1

δf (ψ(αi))
−1

=
n∏
i=1

f (ψi(αi−1))

f (ψi(αi))

n∏
n=1

f (s(ψ(αi)))

f (t(ψ(αi)))
= 1.

Hence the map τ1 descends to cohomology. �
Another way to understand the previous result is the following. The pair (h,A) represents

a complex line bundle with connection (L,∆) over the groupoid G. The function τ1(h,A) as-
signs a complex number to every element ψ in the loop groupoid. This number represents an
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endomorphism of the fiber Lψ obtained through the parallel transport given by the connection
∆.

If we now take a refinement W ′ of the cover W associated to the set {α0, . . . ,

αi−1, β, αi, . . . , αn}, ρW ′
W : S

1
W ′ → S

1
W the natural morphism and ψ : S

1
W → G a loop, we can

see that for ψ′ := ψ ◦ ρW ′
W the equality H(ψ) = H(ψ′) holds. This because the morphism ψ(β)

is equal to eψi(β) and by property 6 the function h restricted to e(G0) is constant and equal to 1.
Then the function H is stable under cover refinement, and therefore we can take the inverse limits
on the admissible covers and to obtain the holonomy morphism over the loop groupoid LG:

Proposition 3.2. There is a natural transgression map (holonomy)

τ1 : C̆1(G,C×(2)G) → C̆0(LG,C×
LG

)

that sends cocycles to cocycles and that descends to cohomology

H
1
(

G,C×
G

d log→ A1
G,C

)
→ H0(LG,C×

LG
).

Remark 3.3. Using the definition of the holonomy given by Brylinski [4] in Lemma 6.1.2 and
taking G to be a Leray groupoid naturally associated to a manifold M as in Example 2.2 (i.e. G is
built out of a open contractible cover of M) we see that the previous map matches the holonomy
of a connection in a line bundle around a loop in M.

4. The Line bundle over the loop groupoid

From a gerbe with connection over the groupoid G we are going to construct a line bundle
over the loop groupoid, in a way that is compatible with the transgression map on a manifold.
The main result of this section is:

Theorem 4.1. There is a natural homomorphism

τ2 : C̆2(G,C×(3)G) → C̆1(LG(W),C×(2)LG(W))

that sends 2-cocycles to 1-cocycles (i.e. gerbes with connection over G to line bundles with
connection over the loop groupoid LG), commutes with the coboundary operator (i.e. τ2 ◦ (δ+
d) = (δ− d) ◦ τ1) and therefore induces a map in cohomology

H
2
(

G,C×
G

d log→ A1
G,C

d→A2
G,C

)
→ H

1
(

LG(W),C×
LG(W)

d log→ A1
LG(W),C

)
.

Proof. Let us first fix the notation. The triple (h,A,B) will be an element of C̆2(G,C×(3)G)

with h : G2 → C
×,A ∈ Γ (G1,A1

G,C
) and B ∈ Γ (G0,A2

G,C
). The arrowΛ of the loop groupoid

LG(W) between the objectsψ and φwill be defined as in Theorem 3.1. The arrow ν of the tangent
loop groupoid TΛLG(W) between the objects ξ ∈ TψLG(W) and ζ ∈ TφLG(W) (as in definition
2.10) will consist of maps ξi, ζi : Ii → TG0, νi : Ii → TG1 and ξ, ζ : {α1, . . . , αn} → TG1 such
that:

s(ξi(αi)) = ξi(αi), t(ξ(αi)) = ξi+1(αi), s(ζ(αi)) = ζi(αi),

t(ζ(αi)) = ζi+1(αi), νi(αi) · ζ(αi) = ξ(αi) · νi+1(αi)

and when i = n tξ(αn) = ξ1(α0), tζ(αn) = ζ1(α0) and νn+1(αn) := ν0(α0). �
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Now we are ready to define τ2(h,A,B). It will consist of the pair (F,∆) ∈
C̆1(LG(W),C×(1)LG(W)) with F : LG(W) → C

× a map, and ∆ : TLG(W)0 → C a linear func-
tional on the tangent loop space.

Definition 4.2.

F (Λ) := exp

(
n∑
i=1

∫
Ii

Λ∗
i A

)
n∏
i=1

h(ψ(αi),Λi+1(αi))

h(Λi(αi), φ(αi))
,

〈∆ψ, ξ〉 :=
n∑
i=1

∫
Ii

B

(
dψi
dt
, ξi(t)

)
dt +

n∑
i=1

〈Aψ(αi), ξ(αi)〉

In this way the map τ2 is clearly an homomorphism.
The other two statements of the theorem will be proven separately.

Proposition 4.3. τ2 sends cocycles to cocycles.

Proof. In other words we need to prove that (δ− d)(h,A,B) = 0 implies (δ+ d)(F,∆) = 0, i.e.
a gerbe with connection over the groupoid induces a line bundle with connection over the loop
groupoid.

The cocycle condition (δh, δA− d logh, δB − dA) = 0 implies:

h(a, b)h(a, bc)−1h(ab, c)h(b, c)−1 = 1 for (a, b, c) ∈ G3 (8)

π∗
2A+ π∗

1A− m
∗
A = d logh in G2 (9)

t
∗
B − s

∗
B = dA in G1. (10)

Let us prove first that δF = 1. This in particular implies that the map F : LG(W) → C
× is a

morphism of groupoids.
Let Λ and Ω be two arrows in the loop groupoid with ψ→Λ φ→Ω γ , we need to calculate

δF (Λ,Ω) = F (Λ)F (Ω)F (Λ ·Ω)−1.
Using the property (9) we have that

exp

(∫
Ii

Λ∗
i A+Ω∗

i A− (Λ ·Ω)∗i A
)

= h(Λi(αi),Ωi(αi))

h(Λi(αi−1),Ωi(αi−1))

and by applying property (8) to the triples

(ψ(αi),Λi+1(αi),Ωi+1(αi)) and (Λi(αi),Ωi(αi), γ(αi))

we get

h(ψ(αi),Λi+1(αi))

h(Λi(αi), φ(αi))

h(φ(αi),Ωi+1(αi))

h(Ωi(αi), γ(αi))

(
h(ψ(αi), (Λ ·Ω)i+1(αi))

h((Λ ·Ω)i(αi), γ(αi))

)−1

= h(Λi+1(αi),Ωi+1(αi))

h(Λi(αi),Ωi(αi))

Multiplying the last two equations and making the product over the i’s it follows that δF (Λ,Ω) =
1.

Now we will prove that (δ∆+ d logF ) = 0. Let ν ∈ TΛLG(W), we want to check

〈−(d logF )Λ, ν〉 = 〈(δ∆)Λ, ν〉
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and we will do so by integrating over a 1-parameter thickening of the path Λ in he direction of
ν. Via the tubular neighborhood diffeomorphism and the fact that ν and Λ are determined by a
finite number of maps over compact sets, we can find a one-parameter familyΛs ∈ LG(W), with
s ∈ [−ε, ε] for ε sufficiently small, such that Λ = Λ0 and dΛs

ds = ν. We claim that∫ ε

−ε

〈
−(d logF )Λs,

dΛs

ds

〉
ds =

∫ ε

−ε

〈
(δ∆)Λs,

dΛs

ds

〉
ds

Let us first elaborate on the left hand side (LHS). The steps will be outlined after the set of
equalities.

LHS = −
n∑
i=1

(∫
Ii

(Λεi )
∗A− (Λ−ε

i )∗A
)

(11)

−
∫ ε

−ε

〈
d log

n∏
i=1

h(ψs(αi),Λsi+1(αi))

h(Λsi (αi), φ
s(αi))

,
dΛs

ds

〉
ds (12)

= −
n∑
i=1

(∫
Ii

〈
AΛε

i
(t),

dΛεi
dt

〉
−

〈
AΛ−ε

i
(t),

dΛ−ε
i

dt

〉
dt

)
(13)

−
n∑
i=1

∫ ε

−ε

(〈
Aψs(αi),

dψs

ds
(αi)

〉
−

〈
Aφs(αi),

dφs

ds
(αi)

〉
(14)

+
〈
AΛs

i+1(αi),
dΛsi+1

ds
(αi)

〉
−

〈
AΛs

i
(αi),

dΛsi
ds

(αi)

〉)
ds (15)

Line (11) is obtained after evaluating the integral at the end points −ε and ε. Line (13) is the
same as line (11) but written in a different way, and lines (14) and (15) are obtained from line
(12) after using property (9) and the fact that

ψs(αi) ·Λsi+1(αi) = Λsi (αi) · φs(αi).
For the right hand side we need to make use of Stoke’s theorem.

RHS =
∫ ε

−ε

〈
∆φs

i
,
dφsi

ds

〉
−

〈
∆ψs

i
,

dψsi
ds

〉
ds (16)
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=
∫ ε

−ε

(
n∑
i=1

∫
Ii

B

(
dφsi
dt
,

dφsi
ds

)
− B

(
dψsi
dt
,

dψsi
ds

)
dt

)
ds (17)

+
n∑
i=1

∫ ε

−ε

(〈
Aφs(αi),

dφs

ds
(αi)

〉
−

〈
Aψs(αi),

dψs

ds
(αi)

〉)
ds (18)

=
n∑
i=1

∫ ε

−ε

∫
Ii

dA

(
dΛsi
dt
,
dΛsi

ds

)
dt ds (19)

+
n∑
i=1

∫ ε

−ε

(〈
Aφs(αi),

dφs

ds
(αi)

〉
−

〈
Aψs(αi),

dψs

ds
(αi)

〉)
ds (20)

=
n∑
i=1

(∫
Ii

〈
AΛ−ε

i
(t),

dΛ−ε
i

dt

〉
−

〈
AΛε

i
(t),

dΛεi
dt

〉
dt

)
(21)

+
n∑
i=1

∫ ε

−ε

(〈
AΛs

i
(αi),

dΛsi
ds

(αi)

〉
−

〈
AΛs

i+1(αi),
dΛsi+1

ds
(αi)

〉)
ds (22)

+
n∑
i=1

∫ ε

−ε

(〈
Aφs(αi),

dφs

ds
(αi)

〉
−

〈
Aψs(αi),

dψs

ds
(αi)

〉)
ds (23)

Line (16) is obtained after applying the coboundary operator to∆. Expanding via the definition
of ∆ we get lines (17) and (18). From property (10) we get line (19) from (17). And lines (20)
and (21) come from line (19) and Stoke’s theorem (evaluating A at the boundary).

Lines (13), (14) and (15) match lines (21), (23) and (22), respectively. Therefore LHS = RHS
and the pair (F,∆) is a 1-cocycle. �

The second part of the theorem states

Proposition 4.4. The map τ2 commutes with the coboundary operator (i.e. τ2 ◦ (δ+ d) = (δ−
d) ◦ τ1)

Proof. Let the pair (f,G) be in C̆1(G,C×(2)G), H := τ1(f,G), (δ− d)H = (δH,−d logH),
(δ+ d)(f,G) = (δf, δG+ d log f, dG) and (F,∆) := τ2(δf, δG+ d log f, dG). We want to prove
that

(δH,−d logH) = (F,∆).

Replacing in F (Λ) we get:

F (Λ) = exp

(
n∑
i=1

∫
Ii

Λ∗
i (δG+ d log f )

)
n∏
i=1

δf (ψ(αi),Λi+1(αi))

δf (Λi(αi), φ(αi))

= exp

(
n∑
i=1

∫
Ii

φ∗G− ψ∗G

)
n∏
i=1

f (Λi(αi))

f (Λi(αi−1))

n∏
i=1

f (ψ(αi))f (Λi+1(αi))

f (Λi(αi))f (φ(αi))

= exp

(
n∑
i=1

∫
Ii

φ∗G− ψ∗G

)
f (ψ(αi)))

f (φ(αi))
= H(φ)H(ψ)−1 = δH(Λ)
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To prove −d logH = ∆ we proceed as in the previous proposition. We claim that∫ ε

−ε

〈
−(d logH)ψs,

dψs

ds

〉
ds =

∫ ε

−ε

〈
(∆)ψs,

dψs

ds

〉
ds.

Elaborating on each side in the same way it was done for the previous proposition we have that

LHS = −
n∑
i=1

(∫
Ii

(ψεi )
∗G− (ψ−ε

i )∗G
)

(24)

−
n∑
i=1

∫ ε

−ε

〈
(d log f−1)ψs(αi),

dψs

ds
(αi)

〉
ds (25)

RHS =
n∑
i=1

∫ ε

−ε

∫
Ii

dG

(
dψs

dt
,

dψs

ds

)
dt ds (26)

∑
i=1

∫ ε

−ε

〈
(δG+ d log f )ψs(αi),

dψs

ds
(αi)

〉
ds (27)

=
n∑
i=1

(∫
Ii

(ψ−ε
i )∗G− (ψεi )

∗G
)

(28)

+
n∑
i=1

∫ ε

−ε

〈
Gψs

i
(αi),

dψsi
ds

(αi)

〉
−

〈
Gψs

i
(αi−1),

dψsi
ds

(αi−1)

〉
ds (29)

+
n∑
i=1

∫ ε

−ε

〈
Gψs

i+1(αi),
dψsi+1

ds
(αi)

〉
−

〈
Gψs

i
(αi),

dψsi
ds

(αi)

〉
ds (30)

+
n∑
i=1

∫ ε

−ε

〈
(d log f )ψs(αi),

dψs

ds
(αi)

〉
ds (31)

where the lines (24)–(27) are obtained after replacing the given information and lines (28) and
(29) come from (26) and Stoke’s theorem. Lines (29) and (30) are equal with opposite signs;
therefore we have that LHS = RHS.

So we have that the following square is commutative:

With the previous two propositions it is clear that τ2 descends to a map in cohomology and
Theorem 4.1 follows. �

Taking the limit over the admissible covers we obtain the following statement.

Corollary 4.5. There is a natural homomorphism

τ2 : C̆2(G,C×(3)G) → C̆1(LG,C×(2)LG)
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that sends 2-cocycles to 1-cocycles (i.e. gerbes with connection over G to line bundles with
connection over the loop groupoid), commutes with the coboundary operator (i.e. τ2 ◦ (δ+ d) =
(δ− d) ◦ τ1) and therefore induces a map in cohomology

H
2
(

G,C×
G

d log→ A1
G,C

d→A2
G,C

)
→ H

1
(

LG,C×
LG

d log→ A1
LG,C

)
.

4.1. Manifolds

In the case that the groupoid M represents a manifold M via a good open cover {Uα}α∈I
(by good we mean that the finite intersections Uα1...αn := Uα1 ∩ · · · ∩ Uαn are either empty or
contractible—namely a Leray cover) with

M0 =
⊔
α∈I

Uα and M1 =
⊔

(α,β)∈I2

Uαβ

we obtain the construction introduced by Gawȩdzki of a line bundle with connective structure
over LM via a gerbe with connection over M [3, p. 108–113](it can also be found in Brylinski’s
book [4, Proposition 6.5.1]). The information of the cocycle (h,A,B) whose cohomology class

lies on the group H2
(

M,C×
M

→d log A1
M,C

→d A2
M,C

)
is equivalent to the data

hαβγ : Uαβγ → C
×, Aαβ ∈ Ω2(Uαβ) ⊗ C, and Bα ∈ Ω1(Uα) ⊗ C

so that

hαβγh
−1
αβδhαγδh

−1
βγδ = 1 inUαβγδ, Aαβ + Aβγ − Aαγ = d loghαβγ inUαβγ,

Bβ − Bα = dAαβ inUαβ.

Let Λ : ψ → φ be an arrow in the loop groupoid LM(W). Recall that as M is a manifold the
category M does not have automorphisms besides the identity (i.e. there is only one arrow from
a point to itself) . Define the indices κi, λi ∈ I such that

ψi(Ii) ⊂ Uκi φi(Ii) ⊂ Uλi,

and therefore Λ(Ii) ⊂ Uκiλi . Hence, the formula (8) can be written as:

F (Λ) = exp

(
n∑
i=1

∫
Ii

Λ∗
i Aκiλi

)
n∏
i=1

hκiκi+1λi+1 (Λ(αi))

hκiλiλi+1 (Λ(αi))

with κn+1 = κ1 and λn+1 = λ1. If ξ ∈ TψLM is a vector field overψ (a tangent vector of the LM),
then the formula (8) can be written as:

(∆, ξ)ψ =
n∑
i=1

∫
Ii

Bκi

(
dψi
dt
, ξi(t)

)
dt +

n∑
i=1

〈Aκiκi+1 (ψ(αi)), ξ(αi)〉.

This assignment matches the ones given by Gawȩdzki [3, p. 111]and Brylinski [4, p. 250]. As
LM, the loop space of M, and the loop groupoid LM are Morita equivalent (see [11, Proposition
5.1.3]) we can deduce Brylinski’s result:
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Proposition 4.6 ([4, Proposition 6.5.1]). The assignment (h,A,B) �→ (F,∆) induces a group
homomorphisms

H
2
(
M,C×

M

d log→ A1
M,C

d→A2
M,C

)
→ H

1
(
LM,C×

LM
d log→ A1

LM,C

)
and is equal to the opposite of the transgression map from sheaves of groupoids with connective
structure and curving over M to line bundles with connection over LM.

4.2. Global quotients

For the purpose of illustration let us consider an orbifold of the form [M/G] obtained from a
manifold in which G acts as a finite subgroup of Diff(M). Moreover let us assume that the gerbe
(h,A,B) that we consider can be represented on the groupoid X with morphisms X1 = M ×G

and objects X0 = M, where the arrow (m, g) takes the object m to the object mg. Namely:

• B ∈ Ω2(M) ⊗ C
• A ∈ Ω1(M ×G) ⊗ C
• h : X2 = M ×G×G → C

×,

and writing Ag := A|M×{g} and hg,k := h|M×{g}×{k} for g, k ∈ G ,we have

g∗B − B = dAg, Ag + Ak + A(gk)−1 = d loghg,h.

LetΛ = (φ, g, k) be an arrow of the loop groupoid LX (as explained in Example 2.6) from (φ, g)
to (φ · k, k−1gk) where φ : [0, 1] → M and φ(0)g = φ(1). Then the formula (8) can be written in
this case as:

F (Λ) = exp

(∫ 1

0
φ∗Ak

)
hg,k(φ(0))

hk,k−1gk(φ(0))
.

And if ξ is a vector field alongφ (i.e. ξ ∈ Γ ([0, 1], φ∗TM)) with ξ(0)g = ξ(1) then the functional
of equation (8) can be expressed as:

(∆, ξ)φ =
∫ 1

0
B

(
dφ

dt
, ξ(t)

)
dt + 〈Ag(φ(0)), ξ(0)〉

4.3. Discrete torsion

When considering conformal field theories on an orbifold [M/G] it is well-known that for
any non-trivial cocycle ε : G×G → C

× and [α] ∈ H2(G,C×), a new model can be defined by
weighting the twisted sectors of the orbifold with a non-trivial phase, the so-called discrete torsion
(see [24]). As argued in [13] this can be seen as a choice of flat B-field over the target stack [M/G].

Let X be a groupoid associated to [M/G], and as in the previous section take X0 := M and
X1 := M ×G with the natural source and target maps. Let Ḡ := ∗ ×G⇒ ∗ be the natural
groupoid representative of G. The morphism X → Ḡ induces a monomorphism H2(G,C×) →
H

2(X,C×(3)X) that allows to define a flat gerbe as follows

h : X2 = M ×G×G → C
×, (x, g1, g2) �→ ε(g1, g2), A = B = 0.
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As the flat gerbe only depends on the group G and not on the geometry of M, we need not to work
with an open cover of the orbifold X. We know [11, Proposition 6.1.1]that the loop groupoid is
Morita equivalent to the groupoid

LX =

(⊔
g Pg

)
×G

�(⊔
g Pg

)
where Pg := {φ : [0, 1] → M|φ(0)g = φ(1)} and G acts on the paths in the natural way, i.e.
{φ · k}(t) = φ(t)k with {φ · k}(0)k−1gk = {φ · k}(1).

For an arrow Λ = (φ, g, k) in LX between the paths (φ, g) and (φ · k, k−1gk) with x = φ(0),
the morphism of groupoids F becomes:

F : LX → C
×, (φ, g, k) �→ h ((x, g), (xg, k))

h
(
(x, k)(xk, k−1gk)

) = ε(g, k)

ε(k, k−1gk)

and the connection ∆ is equal to zero.
In this way we obtain a flat line bundle over the loop groupoid LX that once restricted to the

inertia groupoid produces the discrete torsion. This localization procedure is explained in the next
section.

5. Localization at the fixed points

In [11] we argued that the inertia groupoid can be understood as the fixed point set of the action
of the real numbers over the loops (the action shifts the paths by a real number). This groupoid
has for objects the constant paths i.e. maps ψ : R→ G0 with ψ(t) = x ∈ G0 for all t, and for
morphisms constant arrows Λ : R→ G1. This description is equivalent to the one given in the
Definition 2.5.

As we need to remember the source and the target of the morphisms, the elements of (∧G)1
will be pairs (v, α) ∈ G2 such that v ∈ ∧G0, s(v, α) = v and t(v, α) = α−1vα. The structure maps
of ∧G will be written with the letters s, t, e, i,m to differentiate them from the ones of G.

Hence we have an inclusion of groupoids j : ∧G → LG and so we can pull back the line bundle
(F,∆) previously described to obtain a line bundle with connection over the inertia groupoid.

Lemma 5.1. The line bundle (f, ω) := j∗(F,∆) = (F,∆)|∧G over the inertia groupoid ∧G is
flat.

Proof. As the paths representing ∧G are constant, is easy to see that

f = F |∧G and ω = ∆|∧G0
= A|∧G0

.

From Eq. (10) we see that ddω = 0 because the maps s and t in ∧G0 are equal. Then the connection
ω over ∧G is flat. �

These line bundles are the representatives on what Ruan has coined “inner local systems” (see
[1]) which he uses to twist the Chen-Ruan cohomology of orbifolds. In fact, all the constructions
he has of “inner local systems” could be done using the procedure outlined in this paper. We
believe the only relevant local systems are the ones obtained via transgression from a gerbe with
connection.
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Definition 5.2. In our terminology an “inner local system” is a flat line bundle L over the inertia
groupoid ∧G such that:

• L is trivial once restricted to e(G0) ⊂ ∧G1 (i.e. L|e(G0) = 1) and

• i∗L = L−1 where i : ∧G → ∧G is the inverse map (i.e. (i(v, α) = (α−1vα, α−1))).

There is an extra condition in Ruan’s definition that is trivially fulfilled by L. It just says that if
f : ∧G → C

× is the map that contains the information on transition functions, thenf (α1)f (α2) =
f (α1α2) for composable morphisms; this is true because f is a morphism of groupoids.

Proposition 5.3. The line bundle (f, ω) over ∧G is an inner local system for G.

Proof. As the paths of ∧G are constant, from the Eq. (8) we see that

f (v, α) = h(v, α)

h(α, α−1vα)
for (v, α) ∈ ∧G1.

If v = e(x) andαgoes from x to y thenf (e(x), α) = f (e(x),e(x)) andf (α,e(y)) = f (e(y),e(y));
this follows from the cocycle condition of f applied to the triples (e(x),e(x), α) and (α,e(y),e(y)).

Hence f (v, α) = h(e(x),e(x))
h(e(y),e(y))

, which means that the value of the gluing functions do not depend

on the arrow but on its end points. This implies that the restriction of L to e(G0) is trivial.
Now as f is a morphism of groupoids, then f (Λ)−1 = f (iΛ) and hence the second condition

holds. �

5.1. Global quotients

Recall that for the orbifold X := [M/G] the inertia groupoid ∧X is Morita equivalent to
�(g)[Mg/C(g)] where Mg are the fixed point set of g, C(g) is the centralizer of g in G and
the disjoint union runs over (g) the conjugacy classes of elements in G.

If we forget the connective structure, the construction outlined in this paper assigns to every
gerbe over X a line bundle over ∧X. Via this transgression we get C(g) equivariant line bundles
Lg over Mg.

H3
G(M,Z) ∼= H3(X,Z) −→ H2(∧X,Z) ∼=

⊕
(g)

H2
C(g)(M

g,Z)

These line bundles form an inner local system in the sense of Ruan, but also they are the coefficients
Freed–Hopkins–Teleman [2] used to twist the cohomology of the twisted sectors in order to get
a Chern character isomorphism with the twisted K-theory of the orbifold.

In the case of a gerbe coming from discrete torsion we obtain U(1) representations of the groups
C(g). These representations were used by Adem and Ruan [25] to twist the orbifold cohomology
and in this way they obtained an isomorphism with the twisted orbifold K-theory [18].

6. Generalized holonomy

In this last section we want to emphasize that the holonomy map for gerbes over a groupoid
can be generalized to n-gerbes.
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Theorem 6.1. There is a natural homomorphism

τn : C̆n(G,C×(n+ 1)G) → C̆n−1(LG,C×(n)LG)

that sends n-cocycles to (n− 1)-cocycles (i.e. (n− 1) gerbes with connection over G to (n− 2)
gerbes with connection over the loop groupoid), commutes with the coboundary operator (i.e.
τn ◦ (δ+ (−1)nd) = (δ+ (−1)n−1d) ◦ τn−1) and therefore induces a map in cohomology

H
n(G,C×(n+ 1)G) → H

n−1(LG,C×(n)LG).

Proof. Let us define first the map τn. Take (ω, θ1, . . . , θn) ∈ C̆n(G,C×(n+ 1)G) withω : Gn →
C

× and θj ∈ Γ (Gn−j,A
j

G,C
) and let

(F,∆1, . . . , ∆n−1) := τn(ω, θ1, . . . , θn)

with F : LGn−1 → C
× and ∆j ∈ Γ (LGn−1−j,A

j

LG,C
) defined in the following way.

For � = (Λ1, . . . , Λn−1) a set of n− 1 composable morphisms in LGn−1 joining the objects
ψ0, . . . , ψn−1 with �i : Ii = [αi−1, αi] → Gn−1 for 0 = α0 < α1 < · · · < αp = 1, we define

F (�) := exp

(
p∑
i=1

∫
Ii

(�i)
∗θ1

)
×

p∏
i=1

n−1∏
j=0

× (ω(Λ1
i (αi), . . . , Λ

j
i (αi), ψ

j(αi),Λ
j+1
i+1 (αi), . . . , Λ

n−1
i+1 (αi)))

(−1)j+n

Now let �a = (�a,1, . . . , �a,n−1−k), a ∈ {1, . . . ,k} be vector fields over � = (Λ1, . . . ,

Λn−1−k) ∈ LGn−1−k with �a
i : Ii → (TG)n−1−k, joining the objects ξa,0, . . . , ξa,n−k−1 of the

tangent loop groupoid; i.e. ξa,j is a vector field over ψj and �a,j is an arrow between ξa,j−1 and
ξa,j as well as a vector field over Λj .

For m ∈ {0, . . . , n− 1 − k} we construct the following set of arrows in (TG)n−k:

ϑm�a(αi) :=
(
�
a,1
i (αi), . . . , �

a,m
i (αi), ξ

m(αi), �
a,m+1
i+1 (αi), . . . , �

a,n−1−k
i+1 (αi)

)
.

Define,

〈∆k�, (�1, . . . , �k)〉 :=
p∑
i=1

∫
Ii

θk+1
(

d�i

dt
,�1

i (t), . . . ,�
k
i (t)

)
dt

+
p∑
i=1

n−1−k∑
m=0

(−1)m+n〈θk, (ϑm�1(αi), . . . , ϑm�k(αi))〉

In what follows we will only show that the map τn sends cocycles to cocycles. The other part of
the proof can be done following the steps of Theorem 4.1. Let us suppose that δθk+1 = (−1)n dθk

and we want to prove that δ∆k+1 = (−1)n−1d∆k.
Both δ∆k+1 and d∆k are in C̆(LGn−1−k,Ak+1

LG,C
), so we need to take �a a ∈ {1, . . .k + 1}

vector fields over Λ.
The proof of〈

δ∆k+1,
(
�1, . . . ,�k+1

)〉
= (−1)n−1

〈
d∆k,

(
�1, . . . ,�k+1

)〉
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will be done by thickening Λ in the directions of the �a and then integrating over this tubular
neighborhood.

Then let �(�s) ∈ LGn−1−k with �s := (s1, . . . , sk+1) be such that �(�0) = � and d�(�s)
dsa

|�s=0 = �a.
We argue that∫

[−ε,ε]k+1

〈
δ∆k+1,

(
d�(�s)

ds1
, . . . ,

d�(�s)
dsk+1

)〉
d�s

= (−1)n−1
∫

[−ε,ε]k+1

〈
d∆k,

(
d�(�s)

ds1
, . . . ,

d�(�s)
dsk+1

)〉
d�s. (32)

We just need one last piece of information, the face maps associated to the coboundary opera-
tor δ. They are �l : Gn−k → Gn−k−1 with �l(g1, . . . , gn−k) = (g1, . . . , glgl+1, . . . , gn−k),
�0(g1, . . . , gn−k) = (g2, . . . , gn−k), �n−k(g1, . . . , gn−k) = (g1, . . . , gn−k−1) and ρl :
LGn−k−1 → LGn−k−2 defined in the same way.

It is easy to see that

�l

(
ϑm

d�(�s)
dsa

(αi)

)
= ϑm−1

(
ρl

d�(�s)
dsa

)
(αi) for l < m,

�m−1

(
ϑm

d�(�s)
dsa

(αi)

)
= �m−1

(
ϑm−1

d�(�s)
dsa

(αi)

)
,

�l

(
ϑm

d�(�s)
dsa

(αi)

)
= ϑm

(
ρl−1

d�(�s)
dsa

)
(αi) for l > m+ 1

and note that the only elements not paired are

�0

(
ϑ0

d�(�s)
dsa

(αi)

)
and �n−k

(
ϑn−k−1

d�(�s)
dsa

(αi)

)
,

these will play an important role in what follows.
Writing � := �(�s) we have that the left hand side of (32) becomes:

LHS(32) =
∫

[−ε,ε]k+1

(
p∑
i=1

∫
Ii

(−1)n dθk+1
(

d�i

dt
,

d�i

ds1
, . . . ,

d�i

dsk+1

)
dt

+
p∑
i=1

n−k−2∑
m=0

n−k−1∑
l=0

(−1)m+l+n

×
〈
θk+1;ϑm

(
ρl

d�i

ds1

)
(αi), . . . , ϑm

(
ρl

d�i

dsk+1

)
(αi)

〉)
d�s

after replacing δθk+2 by (−1)n dθk+1, and composing by the maps ρl from the definition of δ.
And the right hand side becomes:

RHS(32) =
k+1∑
j=1

(−1)j+n
p∑
i=1

∫
[−ε,ε]k

∫
Ii

θk+1

(
d�i

dt
,

d�i

ds1
, . . . ,

d̂�i

dsj
, . . . ,

d�i

dsk+1

)∣∣∣∣∣
sj=ε

sj=−ε

× dt d�s+
∫

[−ε,ε]k+1

p∑
i=1

n−1−k∑
m=0

n−k∑
l=0

(−1)m+l+3n−1
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×
〈
θk+1; �l

(
ϑm

d�

ds1
(αi)

)
, . . . , �l

(
ϑm

d�

dsk+1
(αi)

)〉
d�s

after evaluating in the boundary of [−ε, ε]k+1 for the first summand, and after replacing dθk by
(−1)nδθk+1 and evaluating it via the maps �l in the second summand.

Applying Stokes theorem to the first summand of LHS we see that it matches the first summand
of RHS except by the term

(−1)n
p∑
i=0

∫
[−ε,ε]k+1

θk+1
(

d�i

ds1
, . . . ,

d�i

dsk+1

)∣∣∣∣t=αi
t=αi−1

d�s.

The second summand of RHS matches the second summand of LHS except by the terms

(−1)m+l+3n−1
p∑
i=0

∫
[−ε,ε]k+1

〈
θk+1; �l

(
ϑm

d�

ds1
(αi)

)
, . . . , �l

(
ϑm

d�

dsk+1
(αi)

)〉
d�s

when l = 0, m = 0 and l = n− k, m = n− k − 1. It is not difficult to see now that these last
two formulas match. Hence proving that if the tuple (ω, θ1, . . . , θn) is a cocycle it implies that
(F,∆1, . . . , ∆n−1) is also a cocycle. �

Then we can conclude with the following statement:

Theorem 6.2. There is a natural cochain map τ of degree -1 (the transgression map)

τ : C̆∗(G,C×(n+ 1)G) → C̆∗−1(LG,C×(n)LG)

that for ∗ = n sends gerbes to gerbes, and induces a map in Deligne cohomology

H
∗
(

G,C×(n+ 1)G

)
→ H

∗−1
(

LG,C×(n)LG

)
.

Note that for ∗ �= n we get the topological transgression map (see Proposition 2.17), i.e.

H∗(G,Z) → H∗−1(LG,Z) for ∗ > n, H∗(G,R/Z) → H∗−1(LG,C×) for ∗ < n
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